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INTRODUCTION

This is the final report of a multi-year research project for modeling
vortical flows with adaptive Navier-Stokes algorithms. The objectives of
the research were to:

Develop a three-dimensional adaptive Navier-Stokes computational
model,

Investigate adaptation criteria and turbulence models suitable for
vortical flows, and

Compute delta wing and/or canard-wing flows, analyze the results, and
compare with data.

Considerable progress was made in understanding the physics of vortical
flows through three-dimensional calculations, interactive flow
visualization, and theoretical modeling. Of particular interest was vortex
bursting, both steady and non-steady. An adaptive Euler equation solver
was developed and utilized to calculate flows for simple delta wing
geometries as well as an F117A configuration. The objective of developing
adaptive Navier-Stokes capability was not achieved. This was partly due to
the fact that it took longer than we anticipated to develop the Euler part of
the solver, and partly to the fact that vortex bursting is sensitive to viscous
effects for sharp leading edge geometries. During the grant period the
Principal Investigator became aware of the interesting and important
aerodynamic problem of normal force hysteresis for rapidly pitching wings
and aircraft. The hysteresis is caused by a lag in the vortex bursting
position. Computational studies were undertaken to understand this
problem, even though unsteady flows were not in the original list of
objectives.

A number of publications emerged from the research, and all are included
in the list of references. In the following pages, the most important
findings from this work are summarized. The reader is referred to the
individual publications for further details.
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RESEARCH RESULTS

Adaptive Euler Eauation Solver

A considerable portion of the three year grant was focused on the
development of a code for an adaptive unstructured (tetrahedra) grid
solver for the Euler equations. The underlying algorithms were developed
and implemented from first principles. A trilinear Galerkin Finite Element
Method was used for spatial discretization and the Jameson four stage
Runge-Kutta type scheme was used for temporal integration. A blended
second-fourth difference artificial viscosity based upon the Holmes-
Connell-Saxer approach was adopted. Boundary conditions for far field,
solid body, symmetry plane and sharp edges were implemented. This
explicit method was run using local time steps for steady state problems.
For unsteady problems, a novel acceleration factor was introduced which
provided an order of magnitude reduction in computing time for a three-
dimensional problem (Reference 11). A global time step was chosen and
used for all cells where the minimum time step exceeded the global value.
For the other cells, the local time step was used. Although this approach
sacrifices locally accuracy in some cells, a priori and computational
experiments established acceptable levels of global accuracy. The method
is very robust and extremely easy to implement. It is ideal for parallel
applications avoiding the difficulties of block factored implicit methods. A
full account of the solver is given in Reference 81 and an abbreviated
account is given in Reference 12.

Adaptation parameters for vortical flows

In results reported in Reference 2, we experimented with different criteria
for adaptive calculations of vortical flows. Most adaptive calculations we
are aware of have been designed to detect and refine shock waves. One
cannot expect the same feature finders used for shock waves will work
with vortices. We explored two parameters for adaptation. One was the
total pressure loss which is well known to occur in vortical flow. The other
was normalized helicity, the dot product of vorticity and velocity
normalized by the absolute values of the two quantities. This is just the
cosine of the angle between the velocity and vorticity vector which should
be unity in the core of a vortex. A full discussion of the adaptation
methods is given in Landsberg's thesis, Reference 2. The key results are
contained in a review paper written by Landsberg and Murman (Reference

1 A listing of the code is available upon request.
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7) which discusses various methods, including adaptation, for controlling
the numerical diffusion of vortices.

In the extension to unsteady flows reported in References 8 and 12,
entropy was used instead of total pressure. Entropy is a state variable
independent of the reference frame. Our conclusion was that entropy is
easy to implement and a suitable parameter for finding vortices, at least
for the Mach number range considered in this study.

Vortex Breakdown Calculations

The adaptive Euler Solver summarized above was used to compute the
flow about a delta wing with 75 degree leading edge sweep, a Mach
number of 0.3, and for angles of attack from 0 to 52 degrees. The base
non-adapted grid had about 15,000 nodes while the adapted grid had
about 80,000 nodes. Normal force results agree well with experimental
data through the entire range of angles of attack when adaptation is used.
Without adaptation, the grid resolution is insufficient to capture vortex
breakdown. Results for pitching moment and vortex breakdown position
are in reasonable agreement with the data. Computations with breakdown
present do not reach a steady state solution, most probably due to the
unsteady nature of the burst vortex. Small oscillations in forces and
bursting position persist. However, the solutions are steady in the large.
Comparisons at several angles of attack are made with published results
using a much finer non adaptive structured grid and agreement is
satisfactory. Detailed analysis of the flow field reveal interesting features
of the breakdown. At 32 degrees angle of attack, a spiral breakdown is
predicted. At 42 degrees angle of attack, a bubble breakdown followed by
reformation of the vortex and a spiral breakdown is predicted. Detailed
results are given in References 8 and 12.

Calculations for the F117A

The adaptive Euler solver was applied to the F117A (Reference 13)
configuration to test its ability to handle arbitrary geometry. A plastic
model was digitized for the geometrical definition. Results were obtained
at 15, 20, and 25 degrees angle of attack. Vortex bursting was absent in
the first case. For 20 degrees angle of attack, bursting was about at the
trailing edge. Bursting was well over the wing for the third case.
Subsequent wind tunnel studies have shown general agreement with these
findings.
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Normal Force Hysteresis

During the grant period, we were made aware of the interesting
experimental results which show significant normal force hysteresis for
pitching delta wings and for a Russian aircraft. Dynamic force coefficients
can exceed static values by 30-50% on the upstroke portion of the pitch,
and can undershoot static values by lesser, but still significant values on
the down stroke portion. Experimental evidence shows this is due to a lag
in the vortex bursting position, thereby maintaining the augmented normal
forces to a higher angle of attack on the upstroke. A lag in the opposite
direction on the down stroke causes the undershoot. A computational
experiment was done to determine if this effect could be predicted by the
adaptive Euler solver. Preliminary results were obtained (Reference 12)
showing the general effect. Both time and resources ran out before more
detailed calculations could be done.

Visualization of vortical flows on unstructured grids

Visualization of the complex vortical flows proved to be an interesting and
important challenge in order to understand the results (References 1, 3, 4,
5, 6). Considerable attention was paid to developing novel visualization
strategies and evaluating their usefulness. The foundation for the
visualization work is the VISUAL 3 software developed by Giles and
Haimes in the MIT Computational Fluid Dynamics Laboratory. This
software treats generic three-dimensional data sets on unstructured grids,
and it runs interactively on high end graphics workstations. To VISUAL 3
we added a number of capabilities which provide for a hierarchy of
approaches for analyzing complex flow fields. The strategy is to start with
Identification methods which locate the major regions of interest in the
flow field. Several new identification methods were developed including X-
rays, vector clouds, and a shock finder. When the important regions are
found, the next step is to use Scanning methods to zero in on detailed
features. Cutting planes and iso surfaces are examples of these. The final
step is to extact quantitative data with Probing techniques. A variety of
interactive probes were developed, and significantly improved particle
path methods were introduced. The latter permit viewing not only the
path tangent to a vector field, but also its divergence and curl to be seen.
Methods for determining grid quality were also investigated (Ref 9).

Modeling of Vortex Breakdown

In order to better understand the ability of inviscid computational
methods to capture vortex breakdown, studies were undertaken to
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compute and analyze an isolated axisymmetric vortex subjected to a
controlled adverse pressure gradient. An incompressible Navier-Stokes
solver was written and applied to a vortex in a tube with a converging-
diverging nozzle. The breakdown location can be controlled by the inlet
swirl, the Reynolds number, and the divergence angle of the nozzle. Of
these parameters, the Reynolds number effects are insignificant above
relatively low values.

Theoretical studies have also been done from the point of view of vorticity
dynamics. It was found the important effect leading to vortex breakdown
is the tilting of the axial vorticity vector into the azimuthal direction as the
streamtubes expand radially due to the adverse pressure gradient. This is
an inviscid effect which is in agreement with the observation that
Reynolds number plays an insignificant role. These results will be
presented at an upcoming AIAA meeting (Ref 10).

Turbulence modelin'

For Reynolds numbers applicable to flight, leading edge vortices have
turbulent cores. Yet little work has been done to develop turbulence
models for use in CFD studies of vortices. Most investigators who solve the
Reynolds Averaged Navier-Stokes equations use turbulence models
developed for wall bounded flows. There is no reason to believe these are
suitable for vortical flows. Preliminary work was done to develop a
turbulence model for vortex flows. The results are given in the Appendix.
However, when the goal of developing a Navier-Stokes solver was
abandoned, this task became of lesser importance and it was abandoned.

Parallel processing study

We expended some effort on mapping the above unstructured Euler
program onto the Kendall Square Research parallel computer prior to the
date it was available. Our studies showed that the unstructured grid
program woild achieve about 6 gigaflops on the full I K node processor.
Although we expected to implement the results on the KSR machine, delays
in its availability prevented us completing this task.
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APPENDIX

TURBULENCE MODEL FOR A ROTATING FLOW
M.T. Landahl

The modelling of the turbulent stresses in a flow with strong rotation is an important problem in the
calculation of flow in rotating machinery and in strong vortices. How to include the effect of
rotation in turbulence models like the k-e-model has been discussed by many, see Speciale !99 1).
A recent treatment of the problem by Ekander and Johansson (1989) has led to a simple algebraic
Reynolds stress model (ARSM) which appears to include the effect of rotation in a consistent
manner.

2. Model fundamentals

We will consider an incompressible turbulent flow in a Cartesian frame of reference rotating
steadily around the z-axis by the angular velocity w. We subdivide the velocity components and
pressure in mean and fluctuating components by setting

Ui(xj,t) - Ui + ui(xj,t), P = P + p(xj,t), <ui>=O, <p>=O (1)

The momentum equations for the mean quantities (assumed steady) read

- WiY -u la
j +2WejkUk- --rL •- •(• t ij)

xjJ

where the Reynolds stresses t ij are defined by

t ij. - r<uiuj> (3)

and P* is the reduced pressure including the centrifugal effect. The fluctuating components satisfy

Du aU"..o. aOul
--•--+ uj • + 2weijkuk-r--• 

4

1 --o (5)

where

D- a a (6)

and where

tij = -r(uiuj - <uiuj>) (7)
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For the two-dimensional case with rotation araound the z-axis the equations for the fluctuating
components read, with uI= u, u2 = v, u3 = w

D i)Ux i) a mau +t)IM

Dv + u •- Iv - 2wu. - r a -- tij) (9)

- . •I m[)--- tij) (10)

The equations for the Reynolds stresses of interest, t I I r<u 2 > t 12- -r<uv> and t'2 2 =- r<v2>
are obtained by multiplying the equation for u by u, then by v, and that for v by u, then by v and
averaging and adding. After using the equation of continuity (5) one obtains transport equations for
the Reynolds stresses which may be written, following Ekander and Johansson (1989) as follows:

-, -Dij= Pi + Pij + eij(11)

where D't is the "true" time rate of change defined by

D't - Dt +Eij (12)

with Ei1 being the redistribution of the Reynolds stresses due to the rotation, given in the two-
dimensional case by

EII = -2w <uv>, E12 =w (<u2> -<v2>), E22 =2w <uv> (13)

Dij is the diffusive rate of change defined by

Dij - a<ukuiu>X + la<uip> + la<up> (14)
axi r axj r axi

Pij the production

PI -t 1-w+t ii weijkt ik - weijkt jk (15)

Pij the pressure-strain correlation

I. aul I auiP ij =-<(P,- >+-< (P=•-> (16)
r axj r (xi

and eij the viscous dissipation,
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aU .aui~a all u, (a u__,ý)>
Go =- n< x>-n<- (17)

It should be noted that one half of the contribution resulting from the Coriolis term has been kept
on the left-hand side of the evolution equation (8) on the argument that it should be consideresd
part of the substantial rate of change. This results from the requirement that the evolution equations
should be invariant under arbitrary Galilean transformations. A problem with earlier treatments of
the problem has been that all of this term has been incorporated incorrectly into the production
term.

By taking the trace of the Reynolds stresses one obtains the usual equation for the kinetic
energy:with k = (1/2)<uiui>

Dk Dt11(1/2r)4- (l/2)(Pi + Pii - Dj1)- e (18)•-= 1/20Dt-

where e is the dissipation rate

e = 2n< xl••x a*> (19)

For the two-dimensional case considered one thus finds (note that Eli-0)

Dk ai-<uv>y- - e (20)

For the individual production terms Pij we have in this case

P11 = 2<uv y -2W<uv>, P12 = "v2 " + W(<u 2> - <vi2>), P22 = 2w<uv>(21)

In the case of a curvlinear coordinate system the derivatives of the base vectors will enter in the
redistribution terms Ei . For a circular channel with rotation about the origin one finds with ul = Ur

,u2 = Uq, and t' 1 - r<ur Ur>, t 12" - r<ur uq>, t 22 = - r<uquq>

Pu I 2<uruq2ý,Q P12 = -2<urur>ý
9 +2.uquqJ4, P22 = - aur (22)

En 2 U (23)qJ
El 2<gq! E E12 =(<uquq>-<urur>) E2 (23)q
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3.Constuci of an alg, braic stress model

The fundamental idea is to construct algebraic relationsships between the individual components

t ij and the kinetic energy k and the dissipation rate 0. To this purpose an approximation suggested
by Rodi (1976) was utilized in which he suggested that the difference between the advective and

diffusive terms of the individual components t , divided by the corresponding difference in the
equation for k, should be set equal to the ratio between the respective Reynolds stress component
and k.This then leads to the relation

D-n 1Dmj = S(24)
DkkD-- DII

In this manner the problem of determiniing the Reynolds stresses is simplified to that of solving the
evolution equations for k and e. For these one needs modelling of all the terms, except the
production and the redistribution terms.

The 'slow part of the pressure strain term (i.e., the part involving nonlinear fluctuation terms in
the pressure equation) is modeled, following Rotta (1951) as proportional to the anisotropy of the
Reynolds stress tensor :

Pijs =" c, •('ij" -kdij) (25)

where cs = 1.9. The rapid part is modeled, following Reynolds (1970), as being proportional to
the anisotropy of the production tensor:

P ijr = cr (Pij(26)

where P is the trace of the production tenso and cr = 0.6.The presence of the wall will also
transfer energy from the transverse to the streamwise component through reflections.at the wall. In
the paper of Ekander and Johansson (1989) this effect is modelled in a simple manner by
subtracting from the normaal component the value

0- cw W-(Pm- ýP)L (27)

and adding this I&the streamwise component. In (27), cw = 0.72 and L = min (le/y, 1.0), y
denoting the dmae to the wall and lIs (ctk)3/2/(Ok) with ctmO.24 and k=0.41 (the von
Karman constant). Also, the Greek index symbols are used to indicate that summation shall not be
applied. The diffusion rate is modelled, following Daly and Harlow (1970), as

D - cd;xi (ý)('ij5j] , Cd = 0.22 (28)

For the dissipation it is usually assumed that the smallest scales, which presumably carry most of
the viscous dissipation, are isotropic, hence
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ij= dij 2e/3 (29)

The standard modelled equation for e is modified to be consistent with the k-equation as follows:
OW -8e ak 0e ae U e2

T+ Uk7'•' : e'i - e ,j -c2e k (30)

with the following constants chosen: c9 = 0.18, ci1 = 1.44, C2 9 = 1.92.

In their application to channel flows Ekander and Johansson (1989) also had to apply a wall
correction for the inner part of the inner inertial layer, y+ < 30. They used a form proposed by
Rodi (1980).

Their results for the flow in a nonrotating channel a rotating two-dimensional channel, and for a
circular channel showed good both qualitative and quantitative agreement with experiments. Their
results are reproduced in Figs. 1-7.

The model proposed by Ekander and Johansson (1989) for turbulence in a rotating frame of
reference appears self-consistent and gives results in good agreement with experiments. Their
model should be applicable to the flow in a strong vortex.
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